Secretary of State Mike Pompeo on Tuesday urged the Afghan government and Taliban to cooperate after grisly attacks on a maternity hospital and a funeral dealt a blow to US efforts to end the war.
Pompeo called the twin assaults "appalling" but noted that the Taliban, who signed a February 29 accord with the United States in his presence, denied responsibility.
"The Taliban and the Afghan government should cooperate to bring the perpetrators to justice," Pompeo said in a statement.
"As long as there is no sustained reduction in violence and insufficient progress towards a negotiated political settlement, Afghanistan will remain vulnerable to terrorism."
The Islamic State group, which has jostled with the Taliban for influence, claimed responsibility for the attack on the police officer's funeral in eastern Afghanistan that killed at least 24 people.
The extremist movement made no mention of the raid on the hospital in Kabul that killed 14 people, including nurses and newborns.
President Donald Trump has been eager to end America's longest war and began pulling troops after the Leap Year accord with the Taliban, who agreed to reduce violence and not target Western forces, although they have kept attacking Afghan troops.
Following the latest bloodbath, President Ashraf Ghani ordered security forces to resume offensive operations against the Taliban as well as other insurgents.
The forces of the internationally backed government had been observing a unilateral posture of only reacting defensively to Taliban attacks.
The US military made clear that it would not join the Kabul government and keep observing its truce with the Taliban.
"The US military will continue to conduct defensive strikes against the Taliban when they attack our (Afghan) partners," said Lieutenant Colonel Thomas Campbell, a Pentagon spokesman.
"This is going to be a windy, bumpy road, but a political agreement is the best way to end the war," he said, quoting a recent statement by Defense Secretary Mark Esper.
What would you guess are the two biggest killers in the world? Based on media coverage, maybe you guessed gun violence, accidents or COVID-19. But the top two killers are actually cardiovascular disease and cancer. These two diseases combined account for nearly 50% of deaths in the U.S.
Cardiovascular disease and cancer seem to be quite different on the surface. But newly discovered parallels between the origins and development of these two diseases mean that some treatments may be effective against both.
I am a biomedical engineer who has spent two decades studying and developing ways to improve how drugs travel through the body. It turns out that tiny, engineered nanoparticles that can target specific immune cells may be a way to treat both cancer and cardiovascular disease.
Cardiovascular disease and cancer
Atherosclerosis is the most deadly form of cardiovascular disease. It results from inflammation and the buildup of fat, cholesterol and other lipids in the blood vessel wall, forming a plaque. Most heart attacks are caused by plaque rupture. The body’s attempt to heal the wound can form a blood clot that blocks blood vessels and result in a heart attack.
On the other hand, cancer usually arises from genetic mutations that make cells divide uncontrollably. Unrestrainable, rapid cell growth that is untreated can be destructive because it is difficult to stop without harming healthy organs. Cancer can start from and occur in any organ of the body.
Although cardiovascular disease and cancer appear to have different origins and causes, they share many risk factors. For example, obesity, smoking, chronic stress and certain lifestyle choices like poor diet are linked to both diseases. Why might these two diseases share similar risk factors?
Many of the similarities between cardiovascular disease and cancer can be traced to inflammation. Chronic inflammation is a primary cause of atherosclerosis by damaging the cells lining the blood vessels and progressively worsening plaques. Likewise, chronic inflammation can initiate cancer by increasing mutations and support cancer cell survival and spread by increasing the growth of the blood vessels that feed them nutrients and suppressing the body’s immune response.
Cardiovascular disease and cancer share many risk factors.
Treating two conditions at once
Research hints that therapies designed for cancer can also help treat atherosclerosis.
One example is drugs that target immune cells called macrophages in tumors and cause them to eatcancer cells. It turns out a similar drug can cause macrophages to clear dead and dying cells in atherosclerosis, which shrinks plaques.
Another example are antiglycolytic therapies that prevent the breakdown of glucose. Glucose, or sugar, is the body’s main source of energy. These drugs can make diseased tumor blood vessels and atherosclerotic blood vessels look more “normal,” essentially reversing the disease process in those vessels. They can also reduce inflammation in atherosclerosis.
Although currently marketed treatments like statins and fibrates can lower lipid levels and blood clotting in atherosclerosis, these drugs have not sufficiently addressed the risk of death from cardiovascular disease. To improve outcomes, clinicians are increasingly using multiple drugs directed against different targets. One intriguing class of treatments is sodium glucose cotransporter-2 inhibitors, which are traditionally used to treat diabetes. Researchers have shown that these drugs both provide significant protection from cardiovascular disease and treat cancer.
Clinical trials on statins and sodium glucose cotransporter-2 inhibitors indicate a close overlap between inflammation, metabolism and cardiovascular disease that suggests new treatment opportunities. One example is immunotherapies that “inhibit the inhibition” of immunity – that is, they take off the brakes that tumors place on the immune system. This approach to treat cancer also reduced atheroscleroticplaques inanimal studies and reduced vascular inflammation in a small study in people.
A nanomedical Trojan horse
A recent discovery showed that nanotubes – a very small particle made of carbon that is over 10,000 times thinner than a human hair – can go into specific immune cells, travel through the bloodstream and enter tumors as a Trojan horse. These nanotubes can carry anything that researchers put on them, including drugs and imaging contrast agents.
The immune cells carrying the nanotubes naturally home in on tumors through the inflammatory response. Since cancer and atherosclerosis are both inflammatory diseases, my research team and I have been studying whether nanotube-loaded immune cells may also serve as delivery vehicles to plaques.
Nanoparticles can be used to “eat” the plaques that cause heart disease.
Nanotubes can be loaded with a therapy that stimulates immune cells to “eat” plaque debris and thus reduce plaque size. Moreover, restricting drug delivery specifically to those immune cells reduces the risk of off-target side effects. These nanotubes can also be used to improve diagnosis of cardiovascular disease by highlighting plaques.
Another way nanoparticles can enter tumors is by squeezing through openings in new blood vessels grown in inflammatory conditions. This is known as the enhanced permeation and retention effect, where larger molecules and nanoparticles accumulate in tissues with leaky blood vessels and remain there for some time because of their size. First discovered in cancer, researchers are applying this effect to improve drug delivery for cardiovascular disease, which can also involve leaky blood vessels.
Improving drug development
The molecular pathways cancer and cardiovascular disease share have important regulatory implications. The costs involved in getting drugs into the clinic are enormous. The possibility of applying the same drug to two different patient populations offers big financial and risk-reduction incentives. It also offers the potential for simultaneous treatment for patients with both diseases.
Because of the parallels between cancer and cardiovascular disease, cancer nanodrugs may be strong drug candidates to treat cardiovascular disease and vice versa. As basic science discovers other molecular parallels between these diseases, patients will be the beneficiaries of better therapies that can treat both.
MSNBC's Joe Scarborough ripped Sen. Lindsey Graham (R-SC) for expressing indignation over the release of a special purpose grand jury report showed he was recommended for criminal charges related to his efforts to help Donald Trump reverse his Georgia election loss.
The South Carolina Republican called Georgia Secretary of State Brad Raffensperger to discuss election fraud claims raised by Donald Trump and his campaign, which the grand jurors apparently considered to be a criminal violation of the law, and the "Morning Joe" slammed Graham's sanctimonious response to the news.
"Let's be very clear here -- you had Brad Raffensperger, a guy who voted for Trump in '16 and '20, Raffensperger, again, Republican through and through his entire life," Scarborough said. "Brad Raffensperger, who won the Republican primary in a landslide in 2020, saying Lindsey Graham called up, tried to get him to throw out some absentee votes to try to help Donald Trump. Let's not do this whole, 'God help us.'"
"If a senator from out of state can't call another state and talk to a secretary of state and ask that secretary of state to disallow legal votes -- yeah, Lindsey, God help us if there are more senators who think like you and who do things like that," Scarborough added. "In the middle of what was beginning to be a conspiracy to overthrow an American presidential election. You're right, Lindsey, God help us."
Technologies based on nanoscale materials – for example, particles that are more than 10,000 times smaller than the period at the end of this sentence – play a growing role in our world.
Nanotechnology is also revolutionizing medicine and pushing the boundaries of human performance. If you received a COVID-19 vaccine in the United States, it contained nanoparticles.
In the future, nanotechnology may allow doctors to better treat brain diseases and disorders like cancer and dementia because nanoparticles pass easily through the blood-brain barrier.
This isn’t science fiction. These are all active areas of research.
But frameworks for assessing the safety and ethics of nanoparticles have not kept pace with research. As a chemist working in bioscience, this limited oversight worries me. Without updated frameworks, it’s hard to tell whether nanotechnology will make the world a better place.
Nano – what and why?
Any particle or material between 1 and 100 nanometers in one dimension can be classified as “nano.” The period at the end of this sentence is 1,000,000 nanometers, and a human hair is about 100,000 nm in diameter. Both are much too large to be considered “nano.” A single coronavirus is about 100 nanometers in diameter, and soot particles from forest fires can be as small as 10 nanometers in diameter – two examples of naturally occurring nanoparticles.
This video shows how small nanoparticles are, compared with other objects.
Nanoparticles are useful because they have different properties than larger materials, even when they have the same chemical composition. For example, large particles of zinc oxide can’t be dissolved in water and are used as pigment in white paint.
Nanoscale zinc oxide is used in sunscreen, where it looks nearly transparent but reflects sunlight away from your skin to prevent sunburn.
Nanoscale zinc oxide also exhibits antifungal and antibacterial properties that could be useful for making antimicrobial surfaces, but the reason for its antimicrobial properties is not completely understood.
And therein lies the problem. While many scientists are interested in exploiting the positive properties of nanomaterials, my colleagues and I are concerned that scientists still don’t know enough about their behavior.
Nanotechnology safety
Nanoparticles are attractive to biomedical researchers because they can slip through cell membranes. The antimicrobial properties of nanoscale zinc oxide are probably related to their ability to cross bacterial cell membranes. But these nanoparticles can cross human cell membranes as well.
In the United States, zinc oxide is “generally recognized as safe and effective” by the Food and Drug Administration for products like sunscreen because it’s unlikely – in sunscreen – to be toxic to humans.
However, although scientists understand the health effects of large particles of zinc oxide fairly well, they don’t fully understand the health effects of nanoscale zinc oxide. Laboratory studies using human cells have produced conflicting results, ranging from inflammation to cell death.
I’m a big believer in sunscreen. But I also worry about the environmental effects of particles that are known to cross cell membranes.
Hundreds of tons of nano-zinc oxide are produced each year, and it doesn’t degrade easily. If we don’t understand its behavior better, there’s no way to predict whether it will eventually become a problem – though increasing evidence suggests nano-zinc oxide from sunscreen is damaging coral reefs.
Nanotechnology ethics
Nanoparticles’ ability to cross cell membranes does make them effective in therapeutics like vaccines. Nanoparticles show promise for regenerating skeletal muscles, and they could one day treat muscular dystrophy, or the natural atrophy that comes with age.
But COVID-19 vaccines provide a cautionary tale – nanoparticle-enabled COVID-19 vaccines were quickly adopted by the United States and Europe, but lower income countries had far less access due to patent protections on the vaccine and a lack of production and storage infrastructure.
Without an ethical framework for their use, performance-enhancing nanotechnologies that are accessible only in certain places could deepen wealth gaps between high- and low-income countries.
Emerging oversight
Today, different countries treat nanoparticles differently. For example, the European Union’s Scientific Committee on Consumer Safety has banned the use of nanoscale zinc oxide in aerosol sunscreens across the E.U., citing their potential to get into lung cells and, from there, move to other parts of the body. The United States has not taken similar action.
The European Union has established a nanobiotechnology laboratory to study the health and environmental effects of nanoparticles.
The EU’s nanobiotechnology laboratory is working to improve understanding of nanoparticles and their effects on larger biological systems.
In the United States, the National Nanotechnology Initiative, a coordinated government-sponsored research and development effort, is working to bring legal and ethical experts together with scientists. They’ll weigh the benefits and risks of nanotechnologies and disseminate information to other scientists and the public.
Overcoming the disparity in nanoparticle-enabled vaccine distribution is another issue altogether. The World Health Organization’s COVAX program sought to ensure fair and equitable access to COVID-related therapeutics. Similar measures should be considered for all nanotechnology-enabled medicine so everyone can benefit.
Synthetic biology is a field that is experiencing similarly rapid growth. For the past 20 years, the nonprofit iGEM Foundation has held an annual worldwide student competition, which it uses as a platform to teach young scientists to think about the broader implications of their work.
The iGEM Foundation requires participants to consider safety, security and whether their project is “good for the world.” The nanotechnology research community would benefit greatly from adopting a similar model. Nanotechnologies that change the world for the better require coordinating science and ethics to shape how they are used and controlled long after we create them.