U.S. Congressman Jim Jordan (R-OH) speaking at the 2018 Conservative Political Action Conference (CPAC). Photo by Gage Skidmore.
On CNN Monday, former Congressman Joe Walsh (R-IL) criticized Rep. Jim Jordan (R-OH) for his response when asked whether he had communicated with former President Donald Trump on the day of the attack on the U.S. Capitol.
"I know Jim Jordan," said Walsh, a former Tea Party conservative and presidential candidate who became one of Trump's most outspoken critics from the right. "Jim Jordan knows exactly when he spoke to Donald Trump on January 6th and he knows exactly what Donald Trump said to him. Jim Jordan doesn't stammer like that. I've rarely seen Jim Jordan stammer like that ... this is why it's so important that Jim Jordan and Kevin McCarthy and Mark Meadows and all of these guys get subpoenaed and get their butts in front of that select committee."
"They're not going to talk, though, Joe," said anchor Brianna Keilar. "Do you expect they actually will?"
"No. I don't think they'll show or adhere to a subpoena, but they should still be issued and delivered those subpoenas," said Walsh. "The most important things we need to find out are how and why did January 6th happen? Trump incited it. But then Trump's behavior that day we know from reports that he sat in front of the TV and cheered on these supporters. He was speaking to Jordan and he was speaking to McCarthy multiple times that day."
Watch below:
Joe Walsh says Jim Jordan needs to reveal what Trump told him on January 6
www.youtube.com
Additionally, the one-term congressman is facing scrutiny for his promotion of a cryptocurrency in which Cawthorn and those involved have been accused of running a pump-and-dump scheme.
That said, Rachel Maddow producer Steve Benen argues in his latest column that a congressional ethics probe runs the risk of running out of time before Cawthorn leaves Congress in the coming months.
At that point, notes Benen, the Ethics Committee won't have the jurisdiction to do anything about it.
Benen argues that after his defeat, the place for accountability is the Justice Department and wasting the time of the Ethics Committee will be futile.
"There’s a difference between congressional ethics scrutiny and legal scrutiny," Bene writes. "If law enforcement were to take an interest in the congressman’s activities, it would not matter whether the Republican was in office or not."
On Tuesday, The New York Timesreported on how Vernon Jones, a controversial former Democratic Georgia state representative who left the party to support former President Donald Trump, is floundering in his efforts to win the GOP nomination for a safely red House seat.
As the article noted, the House contest wasn't even Jones' first choice — he originally mounted a bid for governor, seeking to unseat incumbent Republican Brian Kemp as revenge for not illegally overturning the results of the 2020 presidential election and declaring Trump the winner.
But Trump decided instead to endorse former Sen. David Perdue for that race, reportedly telling Jones that if he dropped out he would have the former president's backing for Congress.
But things haven't worked out that way, reported Jazmine Ulloa.
"Now he is struggling to stay afloat in a crowded Republican primary for a House seat representing the state’s 10th Congressional District. Like the governor’s race, where Mr. Kemp has remained on top despite Mr. Trump’s endorsement of former Senator David Perdue, the 10th District race has exposed the limits of Mr. Trump’s sway," said the report. "Mr. Jones, who was endorsed by Mr. Trump early this spring after he agreed to drop his bid for the governorship, is running against seven other contenders for the seat representing a Republican stronghold, which stretches from suburban Atlanta to Augusta and includes Athens, a college town. He has struggled to raise money and earn the trust of voters, many who remained skeptical of his party affiliation."
"Among his toughest challengers is Mike Collins, the owner of a trucking company and the race’s top fund-raiser. He ran for the seat in 2014 and lost to Representative Jody Hice, a radio show host and political activist who is now challenging Secretary of State Brad Raffensperger," noted the report. "Other contenders include David Curry, the state revenue commissioner, and Paul C. Broun, who represented the district from 2007 to 2014. Mr. Broun lost a 2016 House bid to represent the state’s Ninth Congressional District against Doug Collins, a Republican."
Jones has faced a number of controversies throughout his career in county and state legislative office, including a corruption scandal around the watershed department of DeKalb County and an allegation of rape, which he denies.
Ironically, Perdue, who beat out Jones for Trump's endorsement to take on Kemp, also appears on track to lose in Tuesday's primary, where polls have shown Kemp has a strong lead to be nominated for a second term, and even Trump appears to be abandoning the effort.
In 1921, he was studying radioactivity at the Kaiser Wilhelm Institute for Chemistry in Berlin, Germany, when he noticed something he could not explain. One of the elements he was working with wasn’t behaving as it should have. Hahn had unknowingly discovered the first nuclear isomer, an atomic nucleus whose protons and neutrons are arranged differently from the common form of the element, causing it to have unusual properties. It took another 15 years of discoveries in nuclear physics to be able to explain Hahn’s observations.
We are two professors of nuclear physics who study rare nuclei including nuclear isomers.
The most common place to find isomers is inside stars, where they play a role in the nuclear reactions that create new elements. In recent years, researchers have begun to explore how isomers can be put to use for the benefit of humanity. They are already used in medicine and could one day offer powerful options for energy storage in the form of nuclear batteries.
This video shows radioactive uranium-238 in a chamber full of mist. The streaks are created as particles are emitted from the radioactive sample and pass through water vapor.
On the hunt for radioactive isotopes
In the early 1900s, scientists were on the hunt for new radioactive elements. An element is considered radioactive if it spontaneously releases particles in a process called radioactive decay. When this happens, the element is transformed over time into a different element.
At that time, scientists relied on three criteria to discover and describe a new radioactive element. One was to look at chemical properties – how the new element reacts with other substances. They also measured the type and energy of the particles released during the radioactive decay. Finally, they would measure how fast an element decayed. Decay speeds are described using the term half-life, which is the amount of time it takes for half of the initial radioactive element to decay into something else.
By the 1920s, physicists had discovered some radioactive substances with identical chemical properties but different half-lives. These are called isotopes. Isotopes are different versions of the same element that have the same number of protons in their nucleus, but different numbers of neutrons.
Uranium is a radioactive element with many isotopes, two of which occur naturally on Earth. These natural uranium isotopes decay into the element thorium, which in turn decays into protactinium, and each has its own isotopes. Hahn and his colleague Lise Meitner were the first to discover and identify many different isotopes originating from the decay of the element uranium.
All the isotopes they studied behaved as expected, except for one. This isotope appeared to have the same properties as one of the others, but its half-life was longer. This made no sense, as Hahn and Meitner had placed all the known isotopes of uranium in a neat classification, and there were no empty spaces to accommodate a new isotope. They called this substance “uranium Z.”
The radioactive signal of uranium Z was about 500 times weaker than the radioactivity of the other isotopes in the sample, so Hahn decided to confirm his observations by using more material. He purchased and chemically separated uranium from 220 pounds (100 kilograms) of highly toxic and rare uranium salt. The surprising result of this second, more precise experiment suggested that the mysterious uranium Z, now known as protactinium-234, was an already known isotope, but with a very different half-life. This was the first case of an isotope with two different half-lives. Hahn published his discovery of the first nuclear isomer, even though he could not fully explain it.
The discovery that the nucleus of an atom is made of both protons and neutrons allowed physicists to explain isotopes as well as uranium Z.
At the time of Hahn’s experiments in the 1920s, scientists still thought of atoms as a clump of protons surrounded by an equal number of electrons. It wasn’t until 1932 that James Chadwick suggested a third particle – neutrons – were also part of the nucleus.
With this new information, physicists were immediately able to explain isotopes – they are nuclei with the same number of protons and different numbers of neutrons. With this knowledge, the scientific community finally had the tools to understand uranium Z.
In 1936 Carl Friedrich von Weizsäcker proposed that two different substances could have the same number of protons and neutrons in their nuclei but in different arrangements and with different half-lives. The arrangement of protons and neutrons that results in the lowest energy is the most stable material and is called ground state. Arrangements resulting in less stable, higher energies of an isotope are called isomeric states.
At first nuclear isomers were useful in the scientific community only as a means to understand how nuclei behave. But once you understand the properties of an isomer, it’s possible to start asking how they can be used.
Technetium-99m is an isomer that is commonly used for diagnosing many diseases, as doctors can easily track its movement through the human body. This photo shows a medical professional injecting technetium-99m into a patient.
Isomers have important applications in medicine and are used in tens of millions of diagnostic procedures annually. Since isomers undergo radioactive decay, special cameras can track them as they move through the body.
For example, technetium-99m is an isomer of technetium-99. As the isomer decays, it emits photons. Using photon detectors, doctors can track how technetium-99m moves throughout the body and create images of the heart, brain, lungs and other critical organs to help diagnose diseases including cancer. Radioactive elements and isotopes are normally dangerous because they emit charged particles that damage bodily tissues. Isomers like technetium are safe for medical use because they emit only a single, harmless photon at a time and nothing else as they decay.
Isomers are also important in astronomy and astrophysics. Stars are fueled by the energy released during nuclear reactions. Since isomers are present in stars, nuclear reactions are different than if a material were in its ground state. This makes the study of isomers critical for understanding how stars produce all the elements in the universe.
Scientists are also investigating whether nuclear isomers could be used to build the world’s most accurate clock or whether isomers may one day be the basis for the next generation of batteries. More than 100 years after the detection of a small anomaly in uranium salt, scientists are still on the hunt for new isomers and have just begun to reveal the full potential of these fascinating pieces of physics.